v 1 1 7 O ct 1 99 6 Quantum Schubert polynomials and the Vafa – Intriligator formula

نویسندگان

  • Anatol N. Kirillov
  • Toshiaki Maeno
چکیده

We introduce a quantization map and study the quantization of Schubert and Grothendieck polynomials, monomials, elementary and complete polynomials. Our construction is based on the quantum Cauchy identity. As a corollary, we prove the Lascoux–Schützenberger type formula for quantum Schubert polynomials of the flag manifold. Our formula gives a simple method for computation of quantum Schubert polynomials. We also prove the higher genus analog of Vafa–Intriligator’s formula for the flag manifold. We introduce the Extended Ehresman–Bruhat order on the symmetric group and prove the equivariant quantum Pieri formula. On leave from Steklov Mathematical Institute, Fontanka 27, St.Petersburg, 191011, Russia Supported by JSPS Research Fellowships for Young Scientists

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula

We study the algebraic aspects of equivariant quantum cohomology algebra of the flag manifold. We introduce and study the quantum double Schubert polynomials S̃w(x, y), which are the Lascoux– Schützenberger type representatives of the equivariant quantum cohomology classes. Our approach is based on the quantum Cauchy identity. We define also quantum Schubert polynomials S̃w(x) as the Gram–Schmidt...

متن کامل

Quantum Cohomology Rings of Lagrangian and Orthogonal Grassmannians and Vafa-intriligator Type Formulas

We verify in an elementary way a result of Peterson for the maximal orthogonal and Lagrangian Grassmannians, and then find Vafa-Intriligator type formulas which compute their 3point, genus zero Gromov-Witten invariants. Additionally, we study total positivity of the related Peterson varieties and investigate its relationship with the positivity of Schubert basis elements.

متن کامل

S ep 2 00 6 VIRTUAL INTERSECTIONS ON THE QUOT SCHEME AND VAFA - INTRILIGATOR FORMULAS

We construct a virtual fundamental class on the Quot scheme parametrizing quotients of a trivial bundle on a smooth projective curve. We use the virtual localization formula to calculate virtual intersection numbers on Quot. As a consequence, we reprove the Vafa-Intriligator formula; our answer is valid even when the Quot scheme is badly behaved. More intersections of Vafa-Intriligator type are...

متن کامل

Quantum Cohomology Rings of Fano Manifolds and a Formula of Vafa and Intriligator

Quantum multiplications on the cohomology of symplectic manifolds were first proposed by the physicist Vafa [Va2] based on Witten’s topological sigma models [Wi1]. In [RuTi], Ruan and the second named author gave a mathematical construction of quantum multiplications on cohomology groups of positive symplectic manifolds (cf. Chapter 1). The construction uses the Gromov-Ruan-Witten invariants (G...

متن کامل

m at h . A G ] 3 1 M ay 2 00 5 VIRTUAL INTERSECTIONS ON THE QUOT - SCHEME AND THEVAFA - INTRILIGATOR FORMULA

We construct a virtual fundamental class on the Quot scheme parametrizing quotients of a trivial bundle on a curve. We use the virtual localization formula to calculate virtual intersection numbers on Quot. As a consequence, we reprove the Vafa-Intriligator formula; our answer is valid even when the Quot scheme is badly behaved. More intersections are computed by the same method. Finally, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996